CS249: ADVANCED DATA MINING

Recommender Systems II

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

May 31, 2017

Recommender Systems

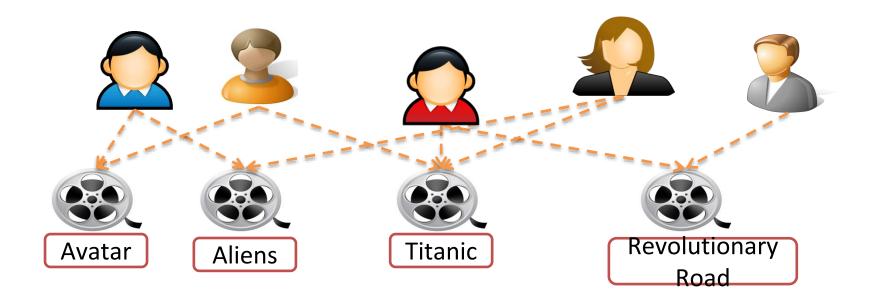
Recommendation via Information Network
 Analysis

 Hybrid Collaborative Filtering with Information Networks

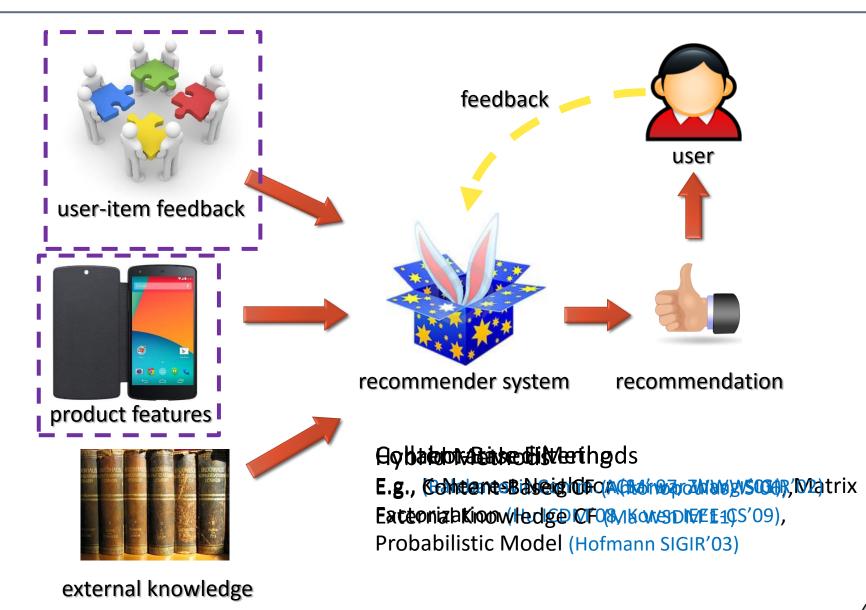
Graph Regularization for Recommendation

• Summary

Traditional View of Recommendation



Recommendation Paradigm



An Example of Traditional Method: Matrix Factorization

	i_1	i_2	i ₃	i4	i ₅	i ₆	i_{γ}	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
<i>u</i> ₃	4		2				2	4
<i>u</i> ₄								
u ₅	5	1	2		4	3		
u_6	4	3		2	4		3	5

R: Rating Matrix

 \hat{R} : Estimated Rating Matrix

	i_1	i_2	i ₃	i4	i ₅	i ₆	i_{γ}	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
<i>u</i> ₃	4	1.7	2	3.2	3.9	3.0	2	4
<i>u</i> ₄	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
<i>u</i> 5	5	1	2	3.4	4	3	1.5	4.6
<i>u</i> ₆	4	3	2.9	2	4	3.4	3	5

	$1.55\ 1.22$	0.37	0.81	0.62	-0.01	
	0.36 0.91	1.21	0.39	1.10	0.25	
U =	0.59 0.20	0.14	0.83	0.27	1.51	V
	0.39 1.33	-0.43	0.70	-0.90	0.68	
	$\begin{bmatrix} 1.55 & 1.22 \\ 0.36 & 0.91 \\ 0.59 & 0.20 \\ 0.39 & 1.33 \\ 1.05 & 0.11 \end{bmatrix}$	0.17	1.18	1.81	0.40	

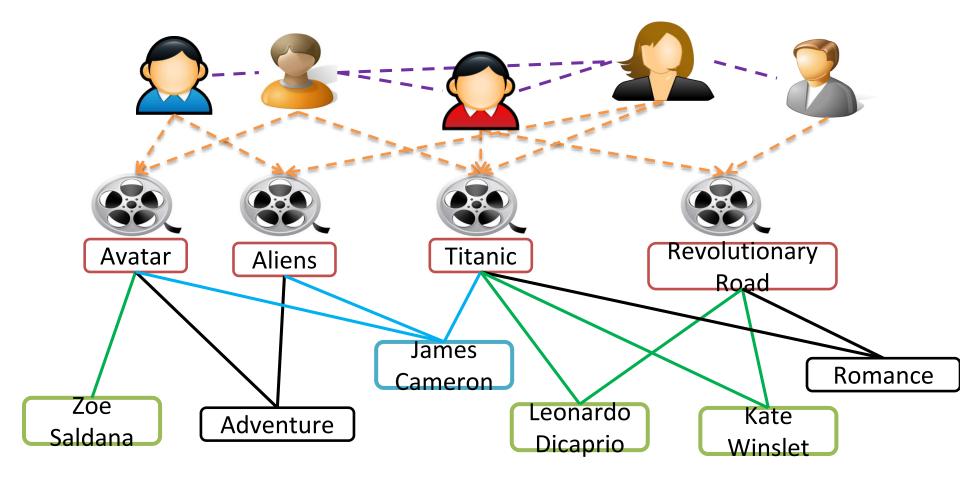
 $\begin{bmatrix} 1.00 & -0.05 & -0.24 & 0.26 & 1.28 & 0.54 & -0.31 & 0.52 \\ 0.19 & -0.86 & -0.72 & 0.05 & 0.68 & 0.02 & -0.61 & 0.70 \\ 0.49 & 0.09 & -0.05 & -0.62 & 0.12 & 0.08 & 0.02 & 1.60 \\ -0.40 & 0.70 & 0.27 & -0.27 & 0.99 & 0.44 & 0.39 & 0.74 \\ 1.49 & -1.00 & 0.06 & 0.05 & 0.23 & 0.01 & -0.36 & 0.80 \end{bmatrix}$

Challenges

 How to address the data sparsity and cold start issues?

How to leverage different sources of information?

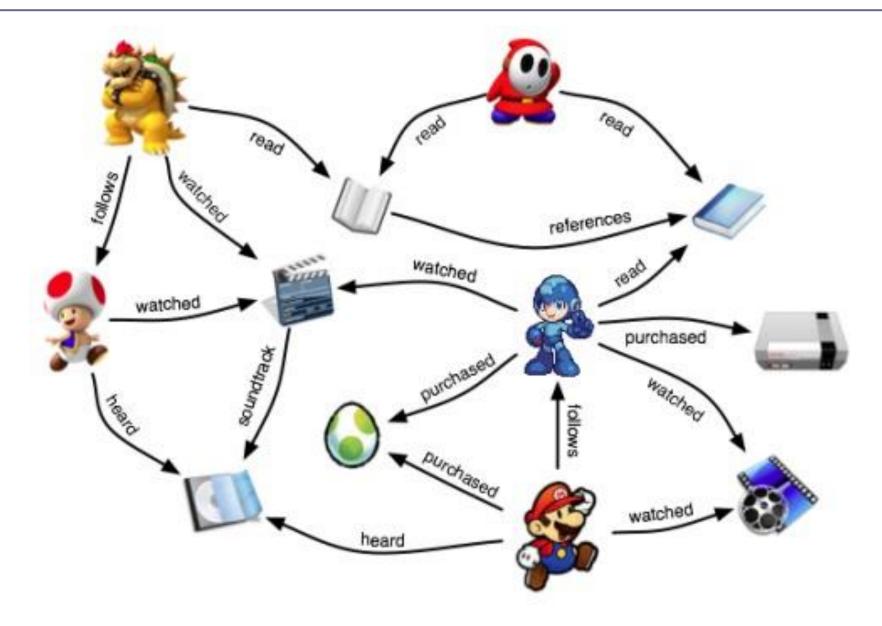
Solution: A Heterogeneous Information Network View of Recommendation



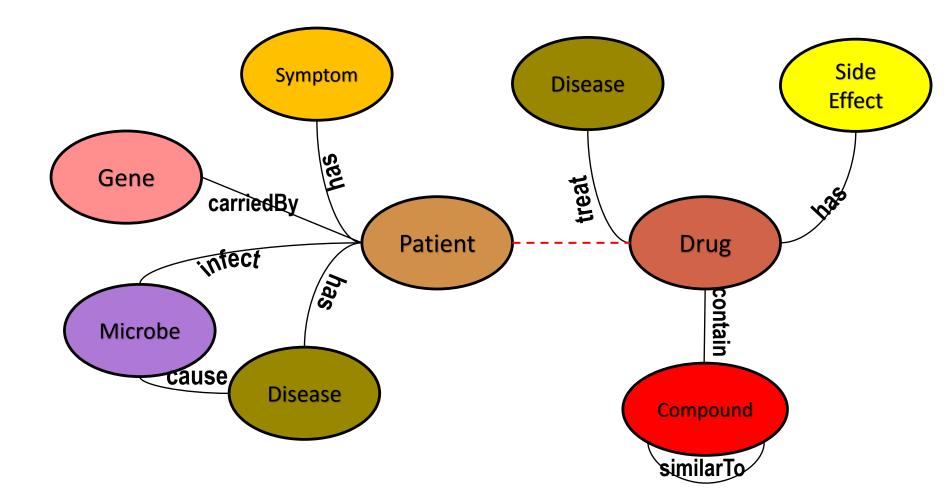
What Are Information Networks?

- A network where each node represents an entity (e.g., user in a social network) and each link (e.g., friendship) a relationship between entities.
 - Nodes/links may have attributes, labels, and weights.
 - Links may carry rich semantic information.

We are living in a connected world!



Even in Biomedical Domain



Recommender Systems

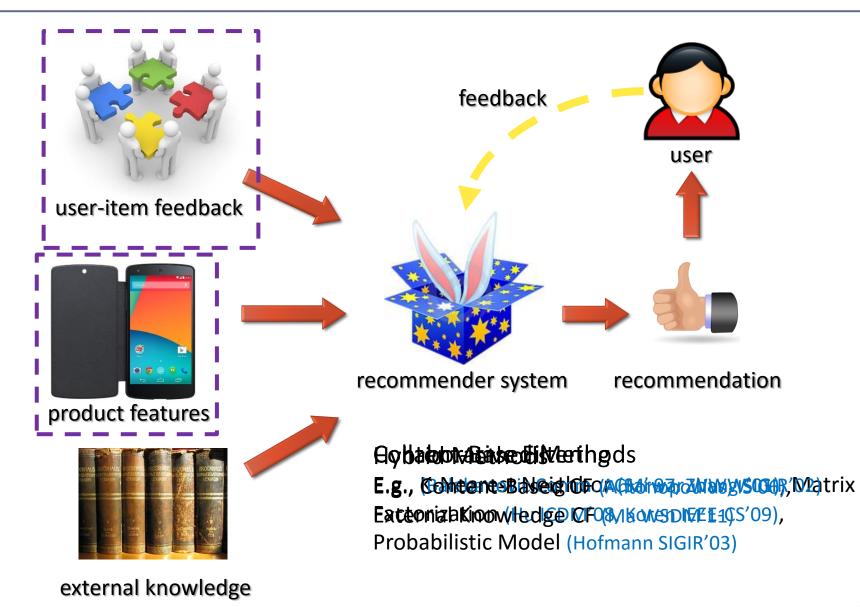
 Recommendation via Information Network Analysis

Hybrid Collaborative Filtering with *(Filtering with Filtering with*

Graph Regularization for Recommendation

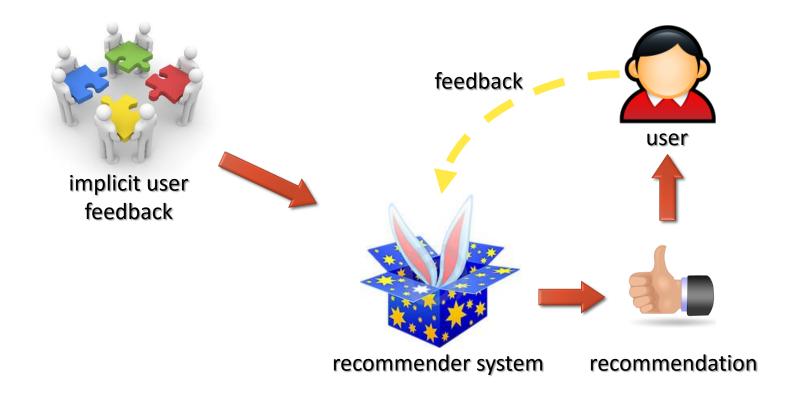
• Summary

Recommendation Paradigm



12

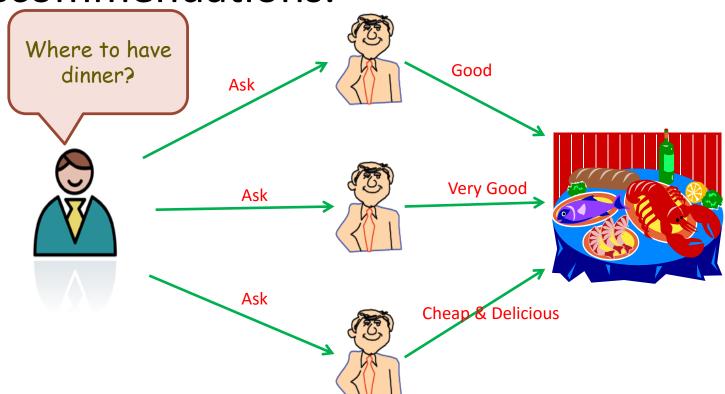
Problem Definition



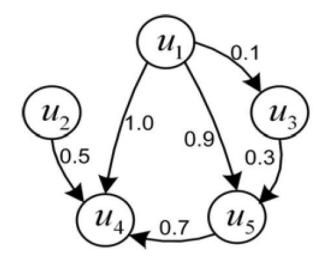
information network

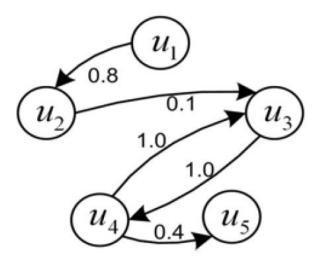
hybrid collaborative filtering with information networks

Recommend with Trust and Distrust Relationships [Ma et al., RecSys'09]
Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.



Trust and Distrust Graph





S^T: Trust Graph

S^D: Distrust Graph

	v_1	v_2	v_3	v_4	v_5
u_1	5		3		5
u_2				1	
u_3		4			
u_4	3		4	2	
u_5		5			4

R: User Item Rating Matrix

Recommendation with Trust and Distrust Relationships

$$\min_{U,V} \mathcal{L}_{\mathcal{T}}(R, S^{\mathcal{T}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} \qquad S^{T}: \text{Trust Graph} \\
+ \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^{+}(i)} (S_{it}^{\mathcal{T}} ||U_{i} - U_{t}||_{F}^{2}) \\
+ \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}. \quad (7)$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} ||U_{i} - U_{d}||_{F}^{2}) + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}. \quad (3)$$

Results

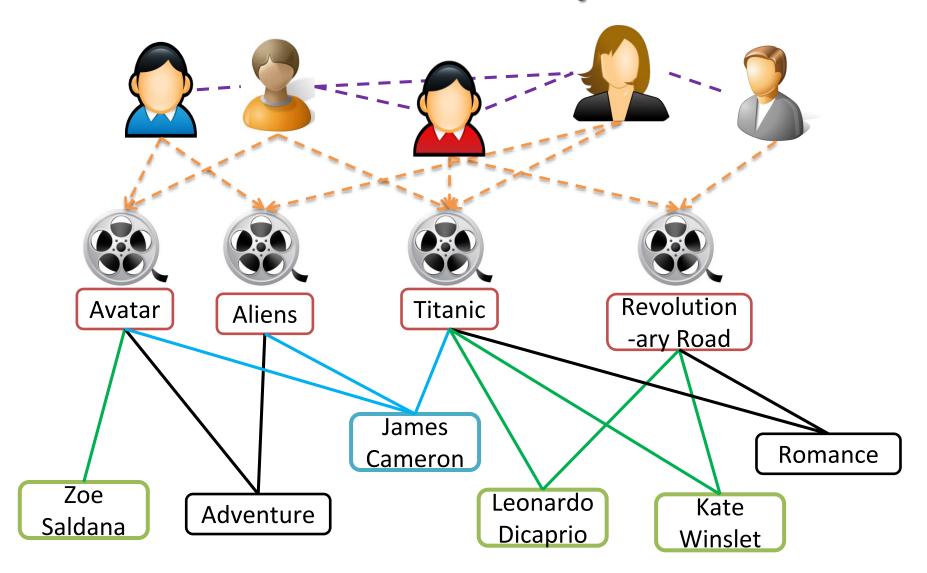
Dataset: Epinions Metric: RMSE

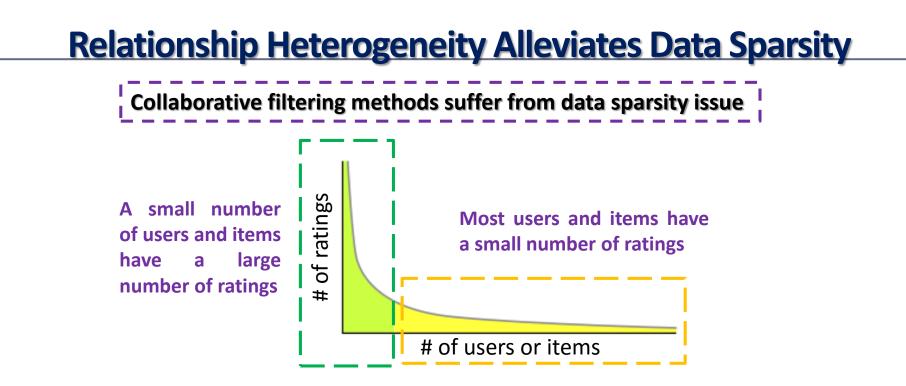
Dataset	Traning Data	Dimensionality	PMF	SoRec	RWD	RWT
	5%	5D	1.228	1.199	1.186	1.177
	570	10D	1.214	1.198	1.185	1.176
Epinions	10%	5D	0.990	0.944	0.932	0.924
Epimons	1070	10D	0.977	0.941	0.931	0.923
	20%	5D	0.819	0.788	0.723	0.721
	2070	10D	0.818	0.787	0.723	0.720

Hybrid Collaborative Filtering with Networks

- Utilizing network relationship information can enhance the recommendation quality
- However, most of the previous studies only use single type of relationship between users or items (e.g., social network Ma,WSDM'11, trust relationship Ester, KDD'10, service membership Yuan, RecSys'11)

The Heterogeneous Information Network View of Recommender System

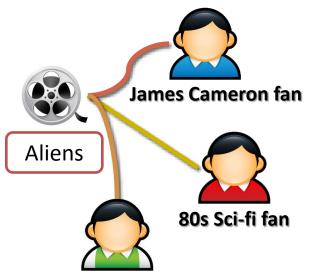




- Heterogeneous relationships complement each other
- Users and items with limited feedback can be connected to the network by different types of paths
 - Connect new users or items (cold start) in the information network

Relationship Heterogeneity Based Personalized Recommendation Models (Yu et al., WSDM'14)

Different users may have different behaviors or preferences



Sigourney Weaver fan

Different users may be interested in the same movie for different reasons

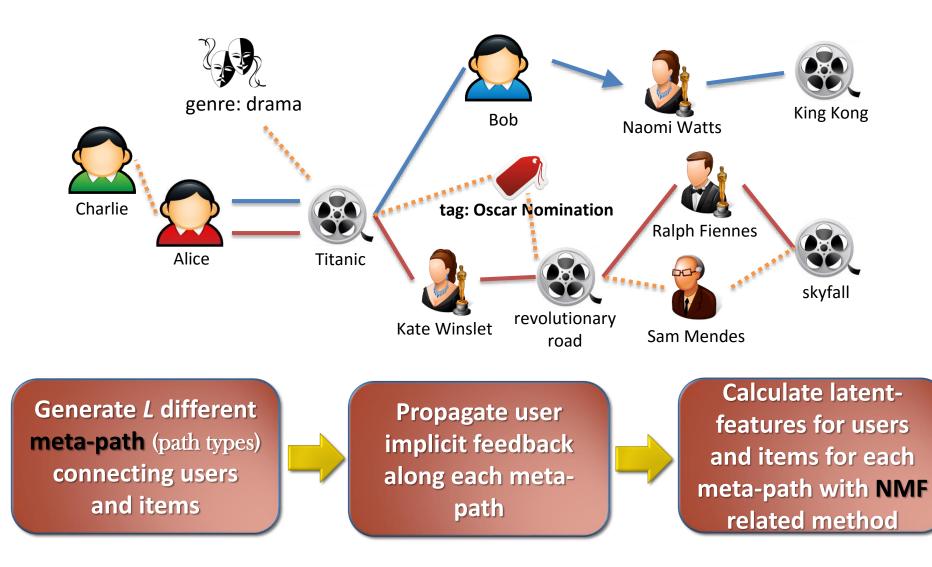
Two levels of personalization Data level

 Most recommendation methods use one model for all users and rely on personal feedback to achieve personalization

Model level

• With different entity relationships, we can learn personalized models for different users to further distinguish their differences

Preference Propagation-Based Latent Features



Recommendation Models

Observation 1: Different meta-paths may have different importance

Global Recommendation Model

$$\hat{r}(u_i, e_j) = \sum_{q=1}^{L} \theta_q \cdot \hat{U}_i^{(q)} \hat{V}_j^{(q)T}$$
(1)
$$\hat{r}(u_i, e_j) = \sum_{q=1}^{L} \theta_q \cdot \hat{U}_i^{(q)} \hat{V}_j^{(q)T}$$
(1)

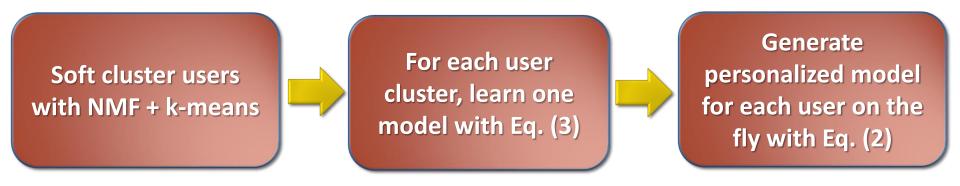
Observation 2: Different users may require different models

Personalized Recommendation Model

$$\hat{r}_p(u_i, e_j) = \sum_{k=1}^c \underbrace{sim(C_k, u_i)}_{q=1} \sum_{q=1}^L \theta_q^{\{k\}} \cdot \hat{U}_i^{(q)} \hat{V}_j^{(q)T}$$
(2)

Parameter Estimation

- Bayesian personalized ranking (Rendle UAI'09)



Learning Personalized Recommendation Model

Experiment Setup

Datasets

Name	#Items	#Users	#Ratings	#Entities	#Links
IM100K	943	1360	89,626	60,905	146,013
Yelp	11,537	43,873	229,907	285,317	570,634

Comparison methods:

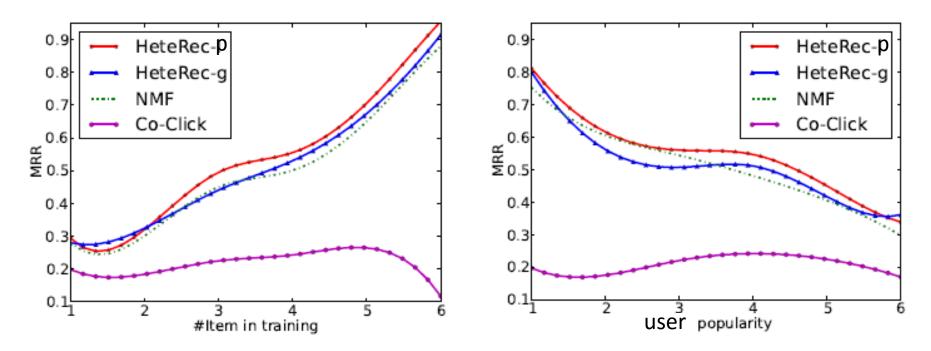
- Popularity: recommend the most popular items to users
- Co-click: conditional probabilities between items
- NMF: non-negative matrix factorization on user feedback
- Hybrid-SVM: use Rank-SVM with plain features (utilize both user feedback and information network)

Performance Comparison

Method		IM1	00K		Yelp				
Method	Prec1	Prec5	Prec10	MRR	Prec1	Prec5	Prec10	MRR	
Popularity	0.0731	0.0513	0.0489	0.1923	0.00747	0.00825	0.00780	0.0228	
Co-Click	0.0668	0.0558	0.0538	0.2041	0.0147	0.0126	0.01132	0.0371	
NMF	0.2064	0.1661	0.1491	0.4938	0.0162	0.0131	0.0110	0.0382	
Hybrid-SVM	0.2087	0.1441	0.1241	0.4493	0.0122	0.0121	0.0110	0.0337	
HeteRec-g	0.2094	0.1791	0.1614	0.5249	0.0165	0.0144	0.0129	0.0422	
HeteRec-P	0.2121	0.1932	0.1681	0.5530	0.0213	0.0171	0.0150	0.0513	

HeteRec personalized recommendation (HeteRec-p) provides the best recommendation results

Performance under Different Scenarios



(a) Performance Change with User Feed- (b) Performance Change with User Feedback Number back Popularity

HeteRec-p consistently outperform other methods in different scenarios better recommendation results if users provide more feedback better recommendation for users who like less popular items

Recommender Systems

 Recommendation via Information Network Analysis

 Hybrid Collaborative Filtering with Information Networks

Graph Regularization for Recommendation

• Summary

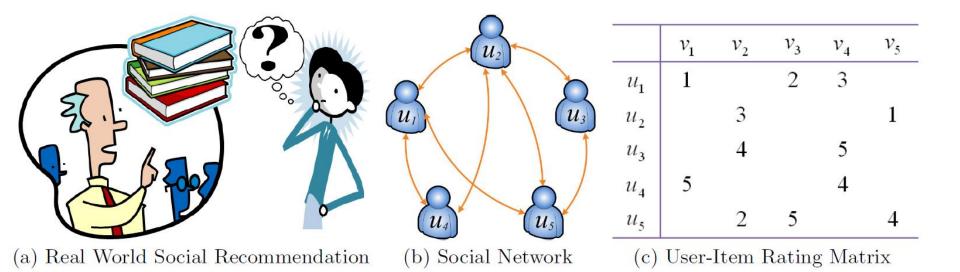
From Graph Regularization Point of View

- Why additional links help?
 - They define new similarity metrics between users or items.
- How to integrate this assumption into recommendation?
 - Use graph regularization to force two entities to be similar in latent space, if they are similar in graph
- The original form of graph regularization

$$\frac{1}{2}\sum w_{ij}(f_i - f_j)^2 = f'Lf$$

- w_{ij} : similarity of node i and j
- *f_i*: some latent representation for node i
- L: Laplacian matrix of W, i.e., L = D W,
 - where D is a diagonal matrix and $D_{ii} = \sum_j w_{ij}$

Recommender Systems with Social Regularization [Ma et al., WSDM'11] Input: Social Relation + Rating Matrix



Two Regularization Forms

- Model 1: Average-based Regularization
 - We are similar to the average of our friends

$$\min_{U,V} \mathcal{L}_{1}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{1}{|\mathcal{F}^{+}(i)|} \sum_{f \in \mathcal{F}^{+}(i)} U_{f}\|_{F}^{2} + \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2},$$
(5)

- Model2: Individual-based Regularization
 - We are similar to each of our friends

$$\min_{U,V} \mathcal{L}_2(R, U, V) = \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^n I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\beta}{2} \sum_{i=1}^m \sum_{f \in \mathcal{F}^+(i)} Sim(i, f) \|U_i - U_f\|_F^2 + \lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2.$$
(11)

Similarity can be propagated via friends: transitivity!

How to compute similarity between two users?

Cosine similarity (VSS)

$$Sim(i,f) = \frac{\sum_{j \in I(i) \cap I(f)} R_{ij} \cdot R_{fj}}{\sqrt{\sum_{j \in I(i) \cap I(f)} R_{ij}^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} R_{fj}^2}}$$

Pearson correlation coefficient (PCC)

$$Sim(i,f) = \frac{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i) \cdot (R_{fj} - \overline{R}_f)}{\sqrt{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i)^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} (R_{fj} - \overline{R}_f)^2}},$$
(14)

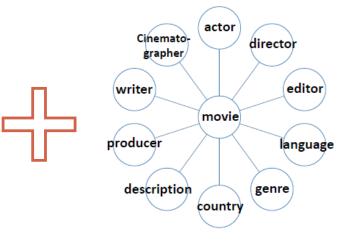
Results

	Table 5: Performance Comparisons (Dimensionality = 10)										
Dataset	Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	$SR1_{vss}$	$\mathrm{SR1}_{\mathrm{pcc}}$	$SR2_{vss}$	$SR2_{pcc}$
(₁₁		MAE	0.6809	0.6288	0.5732	0.5693	0.5643	0.5579	0.5576	0.5548	0.5543
	80%	Improve	18.59%	11.85%	3.30%	2.63%	1.77%	0.0010	0.0010	0.0010	0.0010
		RMSE	0.8480	0.7898	0.7225	0.7200	0.7144	0.7026	0.7022	0.6992	0.6988
		Improve	17.59%	11.52%	3.28%	2.94%	2.18%				
		MAE Improve	$0.6823 \\ 18.02\%$	$0.6300 \\ 11.22\%$	$0.5768 \\ 3.03\%$	$0.5737 \\ 2.51\%$	$0.5698 \\ 1.84\%$	0.5627	0.5623	0.5597	0.5593
Douban	60%	RMSE	0.8505	0.7926	0.7351	0.7290	0.7207				
		Improve	17.20%	11.15%	4.20%	3.40%	2.29%	0.7081	31 0.7078	0.7046	0.7042
		MAE	0.6854	0.6317	0.5899	0.5868	0.5767	0.5706	0.5702	0.5690	0.5685
	40%	Improve	17.06%	10.00%	3.63%	3.12%	1.42%	- C	0.5700 0.5702	0.3090	0.0000
	4070	RMSE	0.8567	0.7971	0.7482	0.7411	0.7295	0.7172	0.7169	0.7129	0.7125
		Improve	16.83%	10.61%	4.77%	3.86%	2.33%	0	0.1100	0.1120	0
		MAE	0.9134	0.9768	0.8712	0.8651	0.8367	0.8290	0.8287	0.8258	0.8256
	90%	Improve	9.61%	15.48%	5.23%	4.57%	1.33%	0.0200	0.0201	0.0200	0.0200
		RMSE	1.1688	1.2375	1.1621	1.1544	1.1094	1.0792	1.0790	1.0744	1.0739
Epinions		Improve	8.12%	13.22%	7.59%	6.97%	3.20%				
-1		MAE Improve	$0.9285 \\ 9.07\%$	$0.9913 \\ 14.83\%$	$0.8951 \\ 5.68\%$	$0.8886 \\ 4.99\%$	$0.8537 \\ 1.10\%$	0.8493	0.8491	0.8447	0.8443
	80%	RMSE	1.1817	14.8370	1.1832	$\frac{4.9970}{1.1760}$	1.10% 1.1256				
		Improve	7.30%	12.95%	7.42%	6.85%	2.68%	1.1016	1.1013	1.0958	1.0954
					70	2.2.070					

Meta-Path-based Regularization [Yu et al., IJCAI-HINA'13]

What if it is more than one type of relation?

	E1	e2		em
u1	0	0	0	1
u2	0	2	0	5
	0	0	0	0
un	3	4	0	0



Rating Data

Heterogeneous Information Network

Solution:

- Use meta-path to generate similarity relation between items, e.g., movie-director-movie
- Learn the importance score for each meta-path

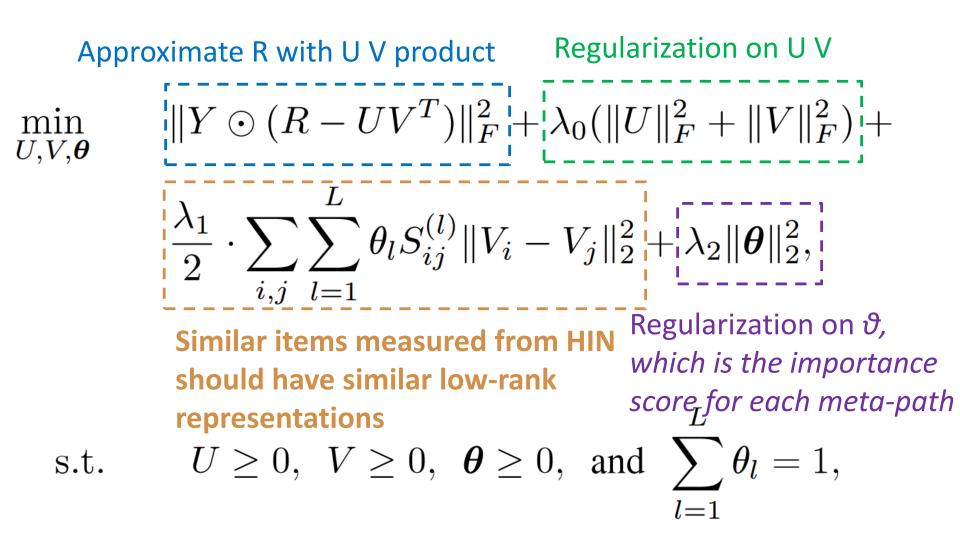
Notations

• We have *n* users and *m* items.

•
$$\mathcal{U} = \{u_1, ..., u_n\}$$
 $\mathcal{I} = \{e_1, ..., e_m\}$

- By computing similarity scores of all item pairs along certain meta-path, we can get a similarity matrix
 - $S^{(l)} \in \mathbb{R}^{n \times n}$
- With L different meta-paths, we can calculate L similarity matrices as
 - $S^{(1)}, S^{(2)}, ..., S^{(L)}$

Objective Function



Equivalent Objective Function Using Graph Laplacian $D_{ii}^{(l)} = \sum_{i=1}^{n} S_{ii}^{(l)} \quad L^{(l)} = D^{(l)} - S^{(l)}$

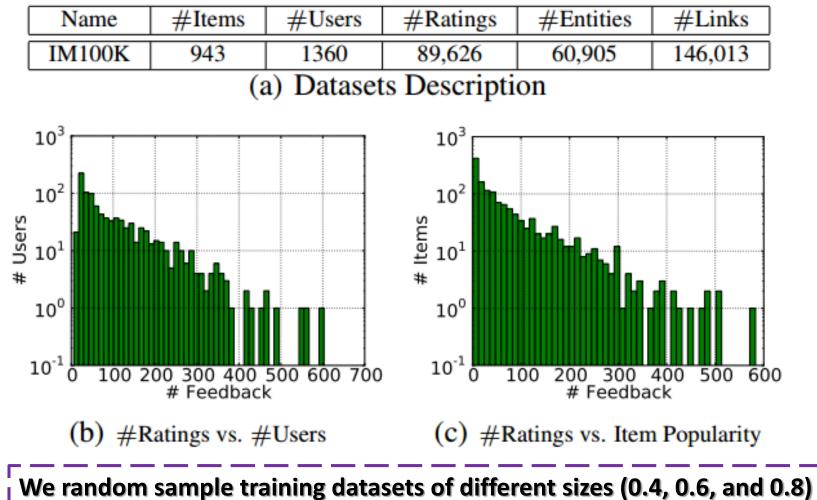
 $\min_{U,V,\boldsymbol{\theta}}$

s.t.

$$\begin{split} \|Y \odot (R - UV^T)\|_F^2 + \lambda_0 (\|U\|_F^2 + \|V\|_F^2) + \\ \lambda_1 \cdot \operatorname{Tr} \left(V^T \left(\sum_l \theta_l L^{(l)} \right) V \right) + \lambda_2 \|\theta\|_F^2, \\ \text{Similar items measured from HIN} \\ \text{should have similar low-rank} \\ \text{representations} \\ U \ge 0, \ V \ge 0,, \ \theta \ge 0, \ \text{and} \ \sum_{l=1}^L \theta_l = 1. \end{split}$$

Dataset

We combine IMDb + MovieLens100K



Results

Metric		MAE			RMSE	
Training Size	40%	60%	80%	40%	60%	80%
UserMean	0.8400	0.8409	0.8324	1.0479	1.0482	1.0407
ItemMean	0.8167	0.8237	0.8130	1.0281	1.0354	1.0235
NMF (d=40)	2.1944	2.1862	2.0162	2.4459	2.4391	2.2915
WNMF (d=10)	0.7919	0.7879	0.7589	1.0055	1.0028	0.9677
WNMF (d=20)	0.7917	0.7875	0.7591	1.0060	1.0026	0.9681
WNMF (d=40)	0.7886	0.7833	0.7569	1.0027	0.9991	0.9655
Hete-MF (d=10)	0.7838	0.7800	0.7530	0.9950	0.9931	0.9683
Hete-MF (d=20)	0.7818	0.7802	0.7528	0.9941	0.9938	0.9593
Hete-MF (d=40)	0.7780	0.7772	0.7400	0.9900	0.9905	0.9503

Recommender Systems

 Recommendation via Information Network Analysis

 Hybrid Collaborative Filtering with Information Networks

Graph Regularization for Recommendation

Summary

- Recommendation via Information Network Analysis
 - Users and items are embedded in a heterogeneous information network
 - Recommendation can be considered as a link prediction problem
- Hybrid Collaborative Filtering with Information Networks
 - Propagate the feedback via meta-paths
- Graph Regularization for Recommendation
 - Similar items/users should have similar latent vectors

More about Course Project

- Presentation
 - 20mins+5minsQ&A
 - Time arrangement
 - June 5: Team 1-4
 - June 7: Team 5-8

- Course Project Final Report + Data (link) + Code
 - Due June 12

Peer Evaluation Questions

1. Is the proposed problem interesting and novel?

3. Is the solution solid formalization and reasonable?

2. Is the

problem

reasonable?

4. To what extent the project achieves the claimed goal? 5. How good is the presentation?