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Recommender Systems

•Recommendation via Information Network 
Analysis

•Hybrid Collaborative Filtering with 
Information Networks

•Graph Regularization for Recommendation

• Summary
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Traditional View of Recommendation
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Recommendation Paradigm
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Collaborative Filtering
E.g., K-Nearest Neighbor (Sarwar WWW’01), Matrix 
Factorization (Hu ICDM’08, Koren IEEE-CS’09), 
Probabilistic Model (Hofmann SIGIR’03)

Content-Based Methods
E.g., (Balabanovic Comm. ACM’ 97, Zhang SIGIR’02)
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E.g., Content-Based CF (Antonopoulus, IS’06), 
External Knowledge CF (Ma WSDM’11)



An Example of Traditional Method: Matrix 
Factorization

5

𝑅: Rating Matrix  𝑅: Estimated Rating Matrix



Challenges

•How to address the data sparsity and cold 
start issues?

•How to leverage different sources of 
information?
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Solution: A Heterogeneous Information 
Network View of Recommendation
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What Are Information Networks?

• A network where each node represents an entity (e.g., 

user in a social network) and each link (e.g., friendship) 

a relationship between entities.

• Nodes/links may have attributes, labels, and weights.

• Links may carry rich semantic information.
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We are living in a connected world!
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Even in Biomedical Domain
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Recommendation Paradigm
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Problem Definition
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Recommend with Trust and Distrust 
Relationships [Ma et al., RecSys’09]

•Users can be easily influenced by the 
friends they trust, and prefer their friends’ 
recommendations.
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Trust and Distrust Graph
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𝑺𝑻: Trust Graph 𝑺𝑫: Distrust Graph

R: User Item Rating Matrix



Recommendation with Trust and 
Distrust Relationships
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𝑺𝑻: Trust Graph

𝑺𝑫: Distrust Graph



Results

•Dataset: Epinions

•Metric: RMSE
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Hybrid Collaborative Filtering with Networks

•Utilizing network relationship information
can enhance the recommendation quality

•However, most of the previous studies only
use single type of relationship between users
or items (e.g., social network Ma,WSDM’11, trust
relationship Ester, KDD’10, service membership
Yuan, RecSys’11)
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The Heterogeneous Information Network View 
of Recommender System
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Relationship Heterogeneity Alleviates Data Sparsity
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Collaborative filtering methods suffer from data sparsity issue

• Heterogeneous relationships complement each other

• Users and items with limited feedback can be connected to the

network by different types of paths

• Connect new users or items (cold start) in the information

network



Relationship Heterogeneity Based Personalized 
Recommendation Models (Yu et al., WSDM’14)
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Different users may have different behaviors or preferences

Aliens

James Cameron fan

80s Sci-fi fan

Sigourney Weaver fan

Different users may be
interested in the same
movie for different reasons

Two levels of personalization
Data level
• Most recommendation methods use

one model for all users and rely on

personal feedback to achieve

personalization

Model level
• With different entity relationships, we

can learn personalized models for

different users to further distinguish

their differences



Preference Propagation-Based Latent Features
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L
user-cluster similarity

Recommendation Models
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Observation 1: Different meta-paths may have different importance

Global Recommendation Model

Personalized Recommendation Model

Observation 2: Different users may require different models

ranking score

the q-th meta-path

features for user i and item j

c total soft user clusters

(1)

(2)



Parameter Estimation
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• Bayesian personalized ranking (Rendle UAI’09)

• Objective function

min
Θ

sigmoid function

for each correctly ranked item pair
i.e., 𝑢𝑖 gave feedback to 𝑒𝑎 but not 𝑒𝑏

Soft cluster users 
with NMF + k-means

For each user 
cluster, learn one 

model with Eq. (3)

Generate 
personalized model 
for each user on the 

fly with Eq. (2)

(3)

Learning Personalized Recommendation Model



Experiment Setup

•Datasets

• Comparison methods:
• Popularity: recommend the most popular items to

users

• Co-click: conditional probabilities between items

• NMF: non-negative matrix factorization on user
feedback

• Hybrid-SVM: use Rank-SVM with plain features
(utilize both user feedback and information network)
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Performance Comparison
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HeteRec personalized recommendation (HeteRec-p) 
provides the best recommendation results

p



Performance under Different Scenarios
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HeteRec–p consistently outperform other methods in different scenarios
better recommendation results if users provide more feedback
better recommendation for users who like less popular items

p p

user
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From Graph Regularization Point of 
View

• Why additional links help?
• They define new similarity metrics between users or items.

• How to integrate this assumption into recommendation?
• Use graph regularization to force two entities to be similar in latent 

space, if they are similar in graph

• The original form of graph regularization

•
1

2
∑𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
= 𝑓′𝐿𝑓

• 𝑤𝑖𝑗 ∶ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗

• 𝑓𝑖: some latent representation for node i
• L: Laplacian matrix of W, i.e., 𝐿 = 𝐷 − 𝑊,

• 𝑤ℎ𝑒𝑟𝑒 𝐷 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑛𝑑 𝐷𝑖𝑖 = ∑𝑗 𝑤𝑖𝑗
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Recommender Systems with Social 
Regularization [Ma et al., WSDM’11]

• Input: Social Relation + Rating Matrix
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Two Regularization Forms

• Model 1: Average-based Regularization

• We are similar to the average of our friends

• Model2: Individual-based Regularization

• We are similar to each of our friends
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Similarity can be 
propagated via 
friends: transitivity! 



How to compute similarity between two 
users?

•Cosine similarity (VSS)

•Pearson correlation coefficient (PCC)
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Results

33



Meta-Path-based Regularization [Yu et 
al., IJCAI-HINA’13]

• What if it is more than one type of relation?

• Solution:
• Use meta-path to generate similarity relation between items, 

e.g., movie-director-movie

• Learn the importance score for each meta-path
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Rating Data Heterogeneous 
Information Network



Notations

•We have n users and m items.
•

•By computing similarity scores of all item 
pairs along certain meta-path, we can get a 
similarity matrix
•

•With L different meta-paths, we can calculate 
L similarity matrices as 
•
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Objective Function
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Approximate R with U V product Regularization on U V

Regularization on θ, 
which is the importance 
score for each meta-path

Similar items measured from HIN 
should have similar low-rank 
representations



Equivalent Objective Function Using 
Graph Laplacian
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Similar items measured from HIN 
should have similar low-rank 
representations



Dataset

•We combine IMDb + MovieLens100K
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We random sample training datasets of different sizes (0.4, 0.6, and 0.8)



Results
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Summary

• Recommendation via Information Network Analysis

• Users and items are embedded in a heterogeneous 

information network

• Recommendation can be considered as a link prediction 

problem

• Hybrid Collaborative Filtering with Information 
Networks

• Propagate the feedback via meta-paths

• Graph Regularization for Recommendation

• Similar items/users should have similar latent vectors
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More about Course Project

•Presentation

• 20mins+5minsQ&A

•Time arrangement

• June 5: Team 1-4

• June 7: Team 5-8

•Course Project Final Report + Data (link) + 
Code

•Due June 12
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Peer Evaluation Questions

1. Is the 

proposed 

problem 

interesting 

and novel?

2. Is the 

problem 

formalization 

reasonable?

3. Is the 

solution solid 

and 

reasonable?

4. To what 

extent the 

project 

achieves the 

claimed goal?

5. How good is 

the 

presentation?
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